

Journal of Alloys and Compounds 217 (1995) 22-24

ALLOYS AND COMPOUNDS

Synthesis of new transition metal nitrides, MWN_2 (M = Mn, Co, Ni)

P. Subramanya Herle, N.Y. Vasanthacharya, M.S. Hegde, J. Gopalakrishnan

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Received 6 April 1994

Abstract

We report the synthesis of ternary transition metal nitrides of the formula MWN₂ for M = Mn, Co, Ni by reaction of the corresponding MWO₄ with NH₃ gas at 600-700 °C. MnWN₂ is isostructural with the already-known FeWN₂, crystallizing in a hexagonal structure (a = 2.901(2), b = 16.48(5) Å) related to LiMoN₂. CoWN₂ and NiWN₂ (which are isostructural amongst themselves) adopt a different hexagonal structure with a smaller c parameter. While the Mn and Fe nitrides are semiconducting, the Co and Ni nitrides are semimetallic.

Keywords: Transition metal nitrides; Semimetallics; Semiconductors

1. Introduction

As compared with the large number of metal oxides known at present, metal nitrides constitute a small family consisting of at best a few hundred members. There is a growing interest in the synthesis of new metal nitrides because of the fascinating structure and properties exhibited by members of this family [1]. However, the synthesis of metal nitrides, especially the ternary and higher ones, is not straightforward, mainly because the free energies of formation are small, thus precluding direct synthesis using elemental nitrogen at high temperatures. Alternative strategies such as ammonolysis of metal oxide precursors [2,3] and decomposition of metal amides [4,5] have been employed for the synthesis of metal nitrides in recent times. The ammonolysis route is quite attractive because of the availability of a large number of ternary metal oxides which could be employed as precursors to nitrides. Thus, using Li₂MoO₄, FeWO₄, FeMoO₄ and Na₂WO₄ as precursors, LiMoN₂ [2], FeWN₂ [3], Fe₃Mo₃N [6] and Na₃WO₃N [7] respectively have been synthesized. Of these, LiMoN₂ is a novel metallic nitride crystallizing in a hexagonal structure where Mo(V) exists in trigonal prismatic coordination. FeWN₂ also possesses a similar hexagonal unit cell but the details of its structure and properties are not known [3].

In an attempt to understand the structure and properties of ternary transition metal nitrides of the general formula MWN₂ where M is a 3d transition metal, we investigated the formation of such phases by reaction of the corresponding MWO₄ with NH₃ gas. Here we report the successful synthesis and preliminary characterization of these nitrides for $M \equiv Mn$, Co, Ni.

2. Experimental details

MWN₂ (M = Mn, Fe, Co, Ni) nitrides were prepared by reaction of freshly prepared MWO₄ with flowing NH₃ gas at temperatures ranging from 600 to 700 °C. The synthesis conditions are given in Table 1. In a typical synthesis the precursor oxide (about 1.5 g) in a ceramic boat was heated in a stream of NH₃ gas (about 120 cm³ min⁻¹). After the reaction the samples

Table 1				
Synthesis	and	characterization	of	MWN ₂

Compound	Ammonolysis conditions	Lattice parameters (Å)		Electrical property
		a	с	
MnWN ₂ FeWN ₂ CoWN ₂ NiWN ₂	700 °C, 14 h 700 °C, 15 h 600 °C, 20 h 600 °C, 20 h	2.901(2) 2.870(2) 2.878(3) 2.869(3)	16.48(5) 16.45(6) 15.24(5) 15.25(5)	Semiconducting Semiconducting Semimetallic Semimetallic

were quenched to room temperature and the products examined by powder X-ray diffraction (Jeol JDX-8P X-ray diffractometer). While the synthesis of singlephase MnWN₂ and FeWN₂ was relatively straightforward, the synthesis of CoWN₂ and NiWN₂ required close control of the reaction temperature and duration. In many preparations metallic Co and Ni were found as impurities. Quantitative analysis of MnWN₂ (Mn and W by energy-dispersive X-ray analysis and N by a Heraeus CHN-O-RAPID combustion analyser) led to the composition MnWN_{1.97±0.02}. Electrical resistivity measurements were carried out on pressed pellets using a four-probe method and magnetic susceptibility measurements using a Lewis coil force magnetometer (field gradient 9.5 Oe cm⁻¹ A⁻¹).

3. Results and discussion

The synthesis of FeWN₂ by ammonolysis of FeWO₄ was reported by Bem and Loye [3]. Employing this method, we could synthesize MWN_2 (M = Mn, Co, Ni) together with FeWN₂ by reaction of MWO₄ with NH₃ gas at 600-700 °C. The X-ray powder diffraction patterns of all the metal nitrides (Fig. 1) are indexable on hexagonal cells similar to those of LiMoN₂ and FeWN₂. It is seen that the Mn and Fe compounds are isostructural amongst themselves, having similar unit cell dimensions. The X-ray diffraction (XRD) pattern of $MnWN_2$ (Table 2) is very similar to that of LiMoN₂. On the other hand, the Co and Ni compounds, which also seem to be isostructural amongst themselves, crystallize in a hexagonal structure with a smaller c parameter (c = 15.25 Å; Table 1). This distinct decrease in the c parameter by about 1.2 Å on going from the Mn and Fe to the Co and Ni compounds probably signals a change in the anion stacking sequence or the cation coordination.

Fig. 1. Cu K α X-ray diffraction patterns of MWN₂ (M=Mn, Fe, Co, Ni). The asterisks indicate Co and Ni metal impurities.

Table 2

X-Ray powder diffraction data for MnWN₂ (unit cell parameters a = 2.901(2), c = 16.48(5) Å)

h k l	d _{obs} (Å)	$d_{ m cal}$ (Å)	<i>I/I</i> ₀	
003	5.471	5.465	97	
006	2.754	2,743	53	
101	2.474	2,483	100	
012	2.410	2,409	37	
103	2.292	2.290	15	
104	2.136	2.138	21	
105	2.001	2.004	6	
009	1.824	1.822	8	
018	1.582	1.585	7	
110	1.450	1.450	29	
113	1.402	1.401	22	

Fig. 2. Resistivity vs. temperature for MWN_2 (M = Mn, Fe, Co, Ni).

Fig. 3. Inverse magnetic susceptibility vs. temperature for $MnWN_2$.

In the ideal LiMoN₂ structure where nitride ions are in the AABB... sequence, Mo(V) is in trigonal prismatic coordination. In view of the close similarity of the XRD patterns of MnWN₂ and FeWN₂ to that of LiMoN₂, we believe that both MnWN₂ and FeWN₂ are isostructural with LiMoN₂. Accordingly, W(IV) would be in trigonal prismatic coordination and Mn and Fe in octahedral coordination in these nitrides. The electrical and magnetic properties of MnWN₂ are consistent with this structural model. The material is semiconducting (Fig. 2) and Curie–Weiss paramagnetic (Fig. 3). The magnetic moment of 5.58 $\mu_{\rm B}$ obtained from the linear region of the $\chi_{\rm m}^{-1}$ -T plot is consistent with octahedral

Fig. 4. Scanning electron micrographs of (a) $MnWN_2$, (b) FeWN₂, (c) CoWN₂ and (d) NiWN₂. The black dots marked with arrows in (c) and (d) represent metallic Co and Ni respectively.

 $Mn^{2+}:3d^5$. FeWN₂ is also semiconducting (Fig. 2), indicating its likely formulation to be $Fe^{2+}W^{4+}N_2$. We could not measure the intrinsic magnetic property of this material, however, because the samples contained small amounts of iron as an impurity. The semiconducting behaviour of MnWN₂ and FeWN₂ is most likely due to W(IV):5d² in trigonal prismatic coordination, which would give rise to a filled d_z^2 band similar to MoS₂ and WS₂ [8]; the 3d electrons of Mn²⁺ and Fe²⁺ would, however, remain localized in the structure.

The Co and Ni compounds, on the other hand, showed a semimetallic behaviour with much lower resistivity (Fig. 2). Unfortunately, the magnetic properties of these materials could not be characterized because of the presence of metallic Co and Ni impurities in the preparations. The semimetallic behaviour is, however, not due to the metallic Co and Ni impurities. Scanning electron micrographs of the MWN₂ ($M \equiv Mn$, Fe, Co, Ni) samples (Fig. 4) clearly show that the metallic impurity phases in the Co and Ni nitrides (black dots in Figs. 4(c) and 4(d)) are too few and far between to account for the semimetallic conductivity. Accordingly, we believe that the observed conductivity of the Co and Ni nitrides represents the intrinsic electrical property of the nitrides. The semimetallic nature together with the smaller c parameter of these compounds suggests an octahedral geometry for W(IV) in these materials. Further investigations using pure

 $CoWN_2$ and $NiWN_2$ samples are essential to establish the structure and properties of these new phases.

4. Conclusions

In conclusion, we have synthesized three new ternary transition metal nitrides, MWN_2 ($M \equiv Mn$, Co, Ni), by reaction of the corresponding tungstate precursors with NH₃ gas. MnWN₂ and FeWN₂ (the latter has already been reported in the literature) crystallize in a hexagonal structure related to LiMoN₂. The electrical and magnetic properties of MnWN₂ are consistent with this structural model. The Co and Ni nitrides, which are isostructural amongst themselves, adopt a slightly different hexagonal structure.

References

- [1] F.J. DiSalvo, Science, 24 (1990) 649.
- [2] S.H. Elder, L.H. Doerrer, F.J. DiSalvo, J.B. Parise, D. Guyomard and J.M. Tarascon, *Chem. Mater.*, 4 (1992) 928.
- [3] D.S. Bem and H.Z. Loye, J. Solid State Chem., 104 (1993) 467.
- [4] T. Wade, R.M. Crooks, E.G. Garza, D.M. Smith, J.O. Willis and J.Y. Coulter, *Chem. Mater.*, 6 (1994) 87.
- [5] M.M. Seibold and C. Russel, J. Am. Ceram. Soc., 72 (1989) 1503.
- [6] D.S. Bem, C.P. Gibson and H.Z. Loye, Chem. Mater., 5 (1993) 397.
- [7] S.H. Elder, F.J. DiSalvo, J.B. Parise, J.A. Hriljac and J.W. Richardson Jr., J. Solid State Chem., 108 (1994) 73.
- [8] C. Haas, in C.J.M. Rooymans and A. Rabenau (eds.), Crystal Structure and Chemical Bonding in Inorganic Chemistry, North-Holland American Elsevier, New York, 1975, p. 103.